Manual

C 2

Fle <iVision

Kassow Robots Plug-In

Feeding
Industrial
Robotics

ars

JEMEeW/E TABLE OF CONTENTS

QIS ——

1. Installing the Plug-In

2. Using the Plug-in

3. Plug-In Functions
1. Communication Functions
2. Recipe Management Functions
3. Vision and Movement Functions
4. Value Acquisition Functions

4. Implementation Example

5. FlexiVision® command List

This Plug-In was developed with the aim of facilitating
communication between Kassow Robots

and the FlexiVision® system.

With this integration, a fast and secure interface with
the FlexiVision® vision system can be implemented
simply. The Plug-In provides a stable and
immediate connection and the ability to send all

the commands required for the correct operation of

an application with a FlexiVision® vision system.

FlexiVision® Plug-In

KQSSOW robots

strong - fast - simple

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/

o ® -
Fle (I]ES’>OW| Installing the Plug-In
by —_—
Before starting, open the side door of the robot controller and

insert the USB stick with the Plug-In into the USB port on the right
side of the controller.

Step 1.

Select the "Workeell' window from one of the two side menus of
the Pendant.

Step 2.

W SAFETY ZONES

SAFETY MODES

CUSTOM DEVICES
ADD DEVI -

INTERFACES

PERSISTENT VARIABLES

Go to the '+ ADD DEVICE' section.

Feeding Industrial Robotics ars

www.FlexiBowl.com X
cautomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

SOl Installing the Plug-In

QIS ——

Step 3.

Press “+".

Step 4.

Install CBun

“\ Robot » repository

2 Settings.. hboard
W asyril devices
* sick devices

W robotiq_devices

i ros_interface

Go to the 'Untitled’ section.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

SOl Installing the Plug-In

QIS ——

Step 5.

Install CBun

{ Untitled » ushO

Type Name Last Modified

%W FlexiVision_Interface 2024-07-18 16:49

® FlexiBowl_Interface 2024-07-12 13538

B System Volume Information 2023-10-16 15:40°

Cancel

Select the 'FlexiVision_Interface'’ file.

Step 6.

FlexiVision Interface

-
-
-~

Select 'Install’ to successfully install the Plug-In within the
controller.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

SOl Installing the Plug-In

S ——

Step 7.

FlexiVision Interface

. 2 ARS AUTOMATION - Niccold Quadrani
® 1.2.2

‘B This plug-in provides a seamless interface between FlexiVision and the
enabling efficient communication and data exchange

FlexiVision

I This plug-in enables the Kassow robot to interface with FlexiVision, facilitati
" communication for data exchange. Users can send commands to the Flex
recelve coordinate data in response (For more info look at FlexiVision User

Press the '+' button to add the plug-in to the '‘Program Tree'.

Step 8.
FlexiVision ——— L |

Q@ sareTvzomes
NAME o
() SAFETY MODES

[L]
~_« —

DEVICE ADDRESS
- INTERFACES
0xa1
ethbot
ethnet

Activate

Program

Press on the red ‘FlexiVision' rectangle under ‘CUSTOM DEVICES',
then enter a name in the '‘DEVICE NAME' field or leave the Default
name and press the ‘Activate’ button.

If the operation is successful, the ‘FlexiVision' rectangle will turn
light green and you will be able to see the ‘FlexiVision' block in
the 'Program Tree' section (bottom green section).

Here you will be able, by dragging the block, to use the
FlexiVision® functions within your program.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

Fle <iBowl

o OIS

Using the Plug-in

GUI explanation and use of functions.

FlexiVision

ACTION /
Connect

This command allows you to establish a connection with |
by specifying the IP address and the port. You can control
FlexiVision robot interfaces at the same time by m*
FlexiVision® parameter. Upon successful connection, utilize
"Number of FlexiVision" to transmit commands to the co
FlexiVision robot interfaces.

\ Command Desc
FLEXIVISION IP ADDRESS

192.168.0.69

FLEXIVISION PORT

The 'Command Name ' section indicates the name of the
command to be executed with the selected block. Clicking on the
command name will open a dialogue box for choosing the
desired command.

Under the section of the command name, you will find a brief
description of the function offered by the command.

At the bottom of the screen, there is the section dedicated to the

parameters required for the commmand to be executed correctly.

These parameters vary depending on the chosen command and
must be configured according to the specific needs of the user.

One parameter common to all commands is ‘Number of
FlexiVision Robot Interface’, which identifies the number of the
FlexiVision® interface that the commmand should be sent to. This
parameter is essential, as the Plug-in supports a maximum of
three FlexiVision® interfaces per robot.

For a thorough understanding of how the various commands
work and the appropriate parameters to send, refer to the next
section of the documentation.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMWE Using the Plug-in

QS ——

GUI explanation and use of methods.

To use the plug-in's methods, it is necessary to use the 'SET'command in
the program tree, in the first section enter a variable consistent with the
output of the method, and in the second section follow the steps below:

1. Select the 'FlexiVision' block.

FlexiVision

2. Select the method you want to apply (Example. “FlexiVision.get_X()")

FlexiVision.get_..(1)

3. Enter the parameters required by the method using the pendant
keyboard.

At the end of the method execution, the output value will be saved in the
variable inserted in the first section of the "'SET' command

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

1. Communication Functions

Q 1.1 FlexiVision — Connect

The Connect function allows a stable connection to be established with the
specified FlexiVision® interface by making it possible to send commands, this
command is compulsorily the first to be used in the application before the other
commands.

Function

CBUN_PCALL MyDevice::connection(string IP, int Port, int n_FlexiVision)

Parameters

string IP - IP of the PC that the FlexiVision software is running on.
intPort - FlexiVision port opened in the 'Robot’ section of the application.

int n_FlexiVision - ID of the FlexiVision interface connected to, to be
reused in the commandes.

Return Value
CBUN_PCALL_RET_OK - Connection successfully established.
CBUN_PCALL_RET_ERROR - A connection could not be established.

o) 1.2 FlexVision — Test Connection

The Test Connection function allows you to check the connection between the
robot and a FlexiVision® interface at any time during the program.

Function
CBUN_PCALL MyDevice::test_Connection(int n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision whose connection is to be checked.
Return Value

CBUN_PCALL_RET_OK - Stable connection and communication possible.
CBUN_PCALL_RET_ERROR - Communication with the FlexiBowl was not possible.

o) 1.3 FlexiVision — Send custom command

The Send custom command function allows a custom string to be sent to the
selected FlexiVision® interface.

Function

CBUN_PCALL MyDevice::send_Custom_Command(string custom, int n_FlexiVision)
Parameters

custom string - String to be sent to the FlexiBowl.

int n_FlexiVision - ID of FlexiVision that the command is to be sent to.

Return Value

CBUN_PCALL_RET_OK - FlexiVision correctly received the command.
CBUN_PCALL_RET_ERROR - FlexiVision did not receive the command correctly.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

2. Recipe Management Functions

2.1 FlexiVision — Get Recipe

The Get Recipe function allows the user to read the recipe currently loaded on
FlexiVision® and save it in the variable ‘currentRecipeName’, the name of the
recipe read must be numeric.

If the name of the recipe is not numeric, the function will only consider
numeric characters, in the absence of which it will display -1.

To read the result use the 'get_Current_Recipe()’ method
(Example. recipeName="Exmpli23” -> currentRecipeName = “123")

Function
CBUN_PCALL MyDevice::get Recipe(int n_FlexiVision)

Parameters

int n_FlexiVision - ID of the FlexiVision interface that you want to know
the recipe for.
Return Value

CBUN_PCALL_RET_OK - Recipe saved correctly.

CBUN_PCALL_RET_ERROR - Communication error, unable to save
the recipe.

A Do
2.2 FlexiVision — Set Recipe
The Set Recipe function allows the user to change the recipe in the program, this

command accepts strings as recipe names.

Function
CBUN_PCALL MyDevice::set_Recipe(string recipe_Name,int n_FlexiVision)

Parameters

int n_FlexiVision - ID of the FlexiVision interface that you want to upload
the recipe to.

String recipe_Name - Name of the recipe to be loaded.

Return Value

CBUN_PCALL_RET_OK - Recipe successfully uploaded.
CBUN_PCALL_RET_ERROR - Communication error, unable to edit the recipe.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

3. Vision and Movement Functions

@) 3.1 FlexiVision - Start Locator

The Start Locator function makes the FlexiBowl® move, using the saved
sequence, until the vision finds an object that can be picked up by the robot.
Function

CBUN_PCALL MyDevice::start_Locator(int n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

CBUN_PCALL_RET_OK - An object was located and the coordinates were saved.

CBUN_PCALL_RET_ERROR - Communication error, unable to send
the command or FlexiVision error.

4@ 3.2 FlexiVision — Turn Locator

The Turn Locator function moves the FlexiBow!® using the saved sequence and then
takes the picture and checks if there is an object that can be picked up by the robot.
Function

CBUN_PCALL MyDevice: :turn_Locator(int n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

CBUN_PCALL_RET_OK - Turn Locator sent successfully.

CBUN_PCALL_RET_ERROR - Communication error, unable to send
the command.

«4®) 3.3 FlexiVision - Stop Locator

The Stop Locator function instantly terminates the FlexiVision® object search
process.
Function

CBUN_PCALL MyDevice::stop_Locator(int n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

CBUN_PCALL_RET_OK - Stop Locator sent successfully.

CBUN_PCALL_RET_ERROR - Communication error, unable to send
the command.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

«4®) 3.4 FlexiVision — Start Empty

The Start Empty function starts the connected FlexiBow!® with the Quick

Emptying procedure, which uses quick movements to remove objects from the
FlexiBowl®.

Function
CBUN_PCALL MyDevice::start_Empty(int n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

CBUN_PCALL_RET_OK - The procedure was successfully completed.

CBUN_PCALL_RET_ERROR - Communication error, unable to send
the command or FlexiVision error.

4@ 3.5 FlexiVision — Start Control

The Start Control function starts the control room activation procedure, the
response is customisable but to be interpreted by the plug-in it must be of the
type: ControIN;xyy;rz.

(Example. “Controll;3;4;5")

Function

CBUN_PCALL MyDevice::start_Control(int n_FlexiVision)

Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

CBUN_PCALL_RET_OK - Reply received correctly.

CBUN_PCALL_RET_ERROR - Communication error, unable to send
the command.

This plug-in does not allow the 'State_Locator' function of FlexiVision® to be used
because the robot cannot work with string values and because the
'State_Locator function is the only function of FlexiVision® that can only return
String values.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

4. Value Acquisition Functions

4.1 FlexiVision.get_X

The FlexiVision.get_X function is a function to acquire the value of the X

coordinate received with the FlexiVision® response to commands such as

"Start Control, 'Start Locator' and 'Turn Locator'.

Function

kr2_program_api::Number MyDevice::get_X(const kr2_program_api::Number& n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

double X - Value of the X co-ordinate of the object found by the vision.

@ 4.2 FlexiVision.get_Y

The FlexiVision.get_Y function is a function to acquire the value of the Y
coordinate received with the FlexiVision® response to commands such as

"Start Control, 'Start Locator' and Turn Locator'.

Function

kr2_program_api: :Number MyDevice::get_Y(const kr2_program_api::Number& n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

double Y - Value of the Y co-ordinate of the object found by the vision.

@ 4.3 FlexiVision.get_RZ

FlexiVision.get_RZ is a function to acquire the RZ co-ordinate value received with
FlexiVision®'s response to commands such as 'Start Control, ‘Start Locator' and
‘Turn Locator’.

Function
kr2_program_ap1i: :Number MyDevice::get_RZ(const kr2_program_api::Number& n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

double RZ - Value of the RZ co-ordinate of the object found by the vision.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

4.4 FlexiVision.get_Move_Flag

FlexiVision.get_Move_Flagis a function to acquire the value of the flag for the
movement, if this function displays 1then the robot can proceed with picking the
piece, then the flag is set to 0.

Function
kr2_program_ap1i: :Number MyDevice::get_Move_Flag(const kr2_program_api: :Number& n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

int Move_Flag- Value of the move flag.

@ 4.5 FlexiVision.get_Hopper_Flag

FlexiVision.get_Hopper_Flag is a function to acquire the value of the hopper
activation flag, if this function displays 1then the hopper IO output must be set
to ON, after returning the flag value, the flag will be reset to 0.

Function
kr2_program_ap1i: :Number MyDevice::get_Hopper Flag(const kr2_program_api::Number& n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

int Hopper_Flag - Value of the Hopper flag.

@ 4.6 FlexiVision.get_Hopper_Sign

FlexiVision.get_Hopper_Sign is a function to acquire the hopper 10 signal value
that has been sent from FlexiVision®.

Function

kr2_program_ap1i: :Number MyDevice::get_Hopper_Sign(const kr2_program_api::Number& n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.

Return Value
int HopperSign - 10 signal sent by FlexiVision.

@ 4.7 FlexiVision.get_Hopper_Time

The FlexiVision.get_Hopper_Time function acquires the time, expressed in
milliseconds, for which the hopper is to remain active, as specified by the
FlexiVision® system.

Function
kr2_program_ap1i: :Number MyDevice::get_Hopper Time(const kr2_program_api: :Number& n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.

Return Value

Double HopperTime - Time (ms) sent by FlexiVision.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

JMISOWVE Plug-In Functions

QIS ——

@ 4.8 FlexiVision.get_Pattern_Number

FlexiVision.get_Pattern_Number is a function to acquire the identification
number of the Pattern found by FlexiVision®.
(Example. Patternl;x;y;r — Pattern number = 1)

Function
kr2_program_api::Number MyDevice::get_Pattern_Number(const kr2_program_api::Number& n_FlexiVision)

Parameters
int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

int PatternNumber - Pattern ID detected by the vision system.

@ 4.9 FlexiVision.get_Control_Number

FlexiVision.get_Control_Number is a function to acquire the identification
number detected by the 'Start Control function.

(Example. Controll;x;y;r — Control number = 1)

Function
kr2_program_api: :Number MyDevice::get_Control_Number(const kr2_program_api::Number& n_FlexiVision)

Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.
Return Value

int ControlNumber - Control ID detected by the vision system.

@ 4.10 FlexiVision.get_Current_Recipe

FlexiVision.get_Current_Recipe is a function to acquire the name of the
currently loaded recipe within the selected FlexiVision interface, the name will
be returned in numeric form (int type variable) so in case you want to use this
function correctly, it is mandatory to have a numeric recipe name.

Function

kr2_program_api: :Number MyDevice::get_Current_Recipe(const kr2_program_api::Number& n_FlexiVision)
Parameters

int n_FlexiVision - ID of FlexiVision interface that the command is to be sent to.

Return Value

int CurrentRecipeName- Name of the recipe uploaded to FlexiVision, the name
shall be compulsorily numeric if you want to read.

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

AN EOW/IE Implementation Example
owvClIS ——

= FlexiVision . get Y (1)

Program

= FlexiVision . get_ RZ (1) Tree

= 0.009 o

-

i % 8 & 8

B

To use the plug-in correctly, after establishing the connection
correctly, use a code like the one above.
As you can seg, first the FlexiVision block is used to send the 'Start
Locator’ command, then enter the 'SET commmands, acquire and
save the necessary data (x,y,rz and MoveFlag) in variables using
the plug-in's methods while entering the Z according to the
height of the object to be taken and according to the frame.
With another series of 'SETs' enter the values of the variables
within the pick point (To change the co-ordinates of a point use
'NamePoint.pos.coord()' where coord can be x,y or zand use
'NamePoint.rot.RPY() to change the rotation, as in the figure)

Feeding Industrial Robotics ars
www.FlexiBowl.com

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

Fle <iBowl

QIS —

FlexiVision Command List

To send the command to FlexiVision®, the value of the string

‘command” must be changed.

N_Mission Command

1 “start_Locator"

Action

Starts the parts localisation
process by recalling the
FlexiBow!® handling
routine in case there are
no parts that can be picked
up.

Return: “Patternl;x;y;r”.

2 “stop_Locator"

Stops the process of
locating the object with
the aid of FlexiBowl®.

3 “turn_Locator"

If no parts are picked up,
by this command the
operator can make the
Flexibowl® rotate and the
“start_Locator” routine
start.

Return: “Patternl;x;y;r”.

4 “test_Locator"

Starts the process of
locating the object without
the aid of FlexiBowl®.
Return: “Patternl;x;y;r”.

5 “start_Control"

Starts the inspection cycle.
Return: “Control1;x;y;r”.

6 “state_Locator'

Locator status diagnostics
is shown:

Return:

“Locator is Running”
“Locator is in Error”
“Locator is not Running”.

7 “start_Empty"

Start the FlexiBowl|® Quick-
Emptying sequence.
Return: “start_Empty
ended”

8 “get_Recipe"

The name of the recipe
currently loaded on
FlexiVision® is shown.
Return: “recipe name”.

9 “set_Recipe=recipe name'

The recipe corresponding
to the sent "recipe name"
is loaded.

Feeding Industrial Robotics
www.FlexiBowl.com

ars

cutomation

http://www.flexibowl.com/
https://it.linkedin.com/company/ars-automation-srl
https://www.youtube.com/c/Flexibowl-part-feeder
https://www.youtube.com/c/Flexibowl-part-feeder

	Diapositiva 1: Manual
	Diapositiva 2: TABLE OF CONTENTS
	Diapositiva 1
	Diapositiva 2: TABLE OF CONTENTS
	Diapositiva 3: Installing the Plug-In
	Diapositiva 4: Installing the Plug-In
	Diapositiva 5: Installing the Plug-In
	Diapositiva 6: Installing the Plug-In
	Diapositiva 7: Using the Plug-in
	Diapositiva 8: Using the Plug-in
	Diapositiva 9: Plug-In Functions
	Diapositiva 10: Plug-In Functions
	Diapositiva 11: Plug-In Functions
	Diapositiva 12: Plug-In Functions
	Diapositiva 13: Plug-In Functions
	Diapositiva 14: Plug-In Functions
	Diapositiva 15: Plug-In Functions
	Diapositiva 16: Implementation Example
	Diapositiva 17

